SRI A.S.N.M. GOVT.COLLEGE (A), PALAKOL,W.G.:DT

(Affiliated to Adikavinannaya University, Rajamahendravaram)

II BSC Degree Examinations at the End of IVSemester (CBCS) SUBJECT – MATHEMATICS

Time: 3 Hours

REAL ANALYSIS

Max. Marks: 75

Answer any FIVE questions each question carriers Five marks:

5X5=25 M

- 1. Prove that Every convergent sequence is bounded.
- 2. Test for the convergent of the series $\frac{1}{2} + \frac{1.3}{2.5} + \frac{1.3.5}{2.5.8} + \dots$
- 3. Test for the convergent for $\sum_{n=1}^{\infty} \frac{1}{2^n+3^n}$
- 4. Examine the continuity of the function defined by f(x) = |x| + |x-1| at x=0,1
- 5. Verify Rolle's theorem in the interval [a,b] for the function (x-a)^m (x-b)ⁿ being +ve integers.
- 6. Prove that $f(x)=x(\frac{e^{\frac{1}{x}-1}}{e^{\frac{1}{x}+1}})$ if $x\neq 0$ and f(0)=0 is continuous at x=0 but not derivable at x=0
- 7. Evaluate $\int_0^{\pi/4} (sec^4x Tan^4x) dx$
- 8. Prove that $1/4 < \int_0^{1/4} \frac{1}{\sqrt{1-x^2}} dx < 1/\sqrt{15}$

SECTION -B

Answer any FIVE questions at least Two from each part .Each questions carries Ten marks:

PART-A

9. Prove that a monotonic sequence is convergent if and only if it is bounded.

10. Prove that
$$\lim_{n\to\infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} - - - - \mp \frac{1}{(n+n)^2} \right] = 0$$

11. State and prove the Cauchy's nth root test

12.If
$$S_n = \frac{1}{1.2} + \frac{1}{2.3} \pm - - - - \frac{1}{n(n+1)}$$
 prove that sequence S_n is convergent

13. If f is continuous on [a,b] then prove that f is bounded and attains its infimum and suprimum.

PART-B

14. If f is continuous on [a,b] then prove that f is uniformly continuous on [a,b].

15 State and prove the Lagrange's mean value theorem.

16. Find C of Cauchy's mean value theorem for $f(x) = \sqrt{x}$ and $g(x) = \frac{1}{\sqrt{x}}$ in [a,b] where 0 < a < b

17.If f:[a,b]→R is continuous on [a,b] then prove that f is integrable on [a,b].

18 State and prove the Fundamental theorem of integrals calculus.