MATHEMATICS MODEL PAPER SRI A.S.N.M. GOVERNMENT COLLEGE(A), PALAKOL. W.G.DT

(Affiliated to Adikavi Nannaya University, Rajahmahendravaram

SEMISTER – V, PAPER 6 – LINEAR ALGEBRA

Time: 3 Hours

Maximum Marks: 75

SECTION-A

Answer any **FIVE** questions. Each question carries **FIVE** marks. **5 x 5 = 25 Marks**

- 1) Let p, q, r be the fixed elements of a field F. Show that the set W of all triads (x, y, z) of elements of F, such that px + qy + rz = 0 is a vector subspace of V3 (F).
- 2) Express the vector α = (1, -2, 5) as a linear combination of the vectors e_1 = (1, 1, 1), e_2 = (1, 2, 3) and e_3 = (2, -1, 1).
- 3) If α , β , γ are L.I vectors of the vector space V(R) then show that $\alpha + \beta$, $\beta + \gamma$, $\gamma + \alpha$ are also L.I vectors.
- 4) Describe explicitly the linear transformation T: $R^2 \rightarrow R^2$ such that T (1, 2) = (3, 0), and T (2, 1) = (1,2).
- 5) Let U(F) and V(F) be two vector spaces and T : U (F) \rightarrow V (F) be a linear transformation.

Prove that the range set R(T) is a sub space of V(F).

- 6) Solve the system 2x-3y+z=0, x+2y-3z=0, 4x-y-2z=0.
- 7) State and prove Schwarz inequality.
- 8) Show that the set $S = \{(1,1,0), (1,-1,1), (-1,1,2)\}$ is an orthogonal set of the inner product space $R^3(R)$.

SECTION - B

Answer any FIVE questions at least two from each part. Each question carries Ten marks: 5 X 10 = 50 M

PART – I

- 9. Prove that the subspace W to be a subspace of V(F) $\Leftrightarrow a\alpha + b\beta \in W \quad \forall a,b \in F \text{ and } \alpha,\beta \in W$
- 10. Prove that the four vectors $\alpha = (1,0,0)$, $\beta = (0,1,0)$, $\gamma = (0,0,1)$, $\delta = (1,1,1)$ in V3(C) form a Linear dependent set, but any three of them are Linear Independent.
- 11. Let W be a subspace of a finite dimensional vector space V(F), then prove that $dim (V_W) = dim (V) dim (W)$
- 12. Let W_1 and W_2 be two subspaces of a finite dimensional vector space V(F). Then prove that dim $(W_1 + W_2) = \text{dim} (W_1) + \text{dim} (W_2) - \text{dim}(W_1 \cap W_2)$.
- 13. State and prove Rank-Nullity theorem.

14. Define a Linear transformation. Show that the mapping T: $R^3 \rightarrow R^2$ is defined by

T (x, y, z) = (x - y, x - z) is a linear transformation.

15. State and prove Cayley- Hamilton theorem.

16. Find the characteristic roots and the corresponding characteristic vectors of the matrix

- $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
- 17. State and prove Bessel's inequality.
- 18. Applying Gram-Schmidt orthogonalization process to obtain an orthonormal basis of $R^{3}(R)$ from the basis S = { (1, 1, 0), (-1,1,0), (1, 2, 1,)}.
